Введение

 

Все мы знаем, что нефть у нас не бесконечная, а исследования доказали еще ее органическое происхождение – это значит нефть относится к невозобновляемым ресурсам. Нефть - горючая маслянистая жидкость, являющаяся смесью углеводородов, красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть, имеет специфический запах, распространена в осадочной оболочке Земли; одно из наиважнейших полезных ископаемых. Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть — жидкие углеводороды. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля ее в общем потреблении энергоресурсов составляет 48 %.Именно поэтому нефть как источник энергии, так важна для человечества.

На текущий момент основными источниками энергии являются : ТЭЦ, ТЭС, АЭС.

На графике четко видно что лидирующем положением может похвастаться только ТЭЦ, которые в качестве топлива используют невозобновляемые ресурсы такие как: нефть (все виды топлива получаемые из нефти), уголь, газ.

На долю ГЭС приходится лишь 20%, при этом даже если в мире начнуть использовать максимальное количество рек под ГЭС, суммарная выделяемая энергия всеми гидроэлектростанциями не способна будет удовлетворить потребности человества.

Атомные электростанции занимают лишь 17% мирового энергопроизводства, использование реакции деления атома влечет за собой серьезные последствия в виде радиации.

Сейчас активно в качестве альтернативных сырьевых ресурсов используются газ, уголь, торф, энергия деления атома (атомная энергетика ).Но мы прекрасно понимаем что они не способны заменить полностью нефть как сырья для получения энергии. Да и запасы того же природного газа не бесконечны, используя данные альтернативные сырьевые ресурсы мы лишь отсрочим энергетический кризис.

 

 

Ученые прекрасно осознают наступающую на пятки проблему, и создают и изучают альтернативные источники энергии. На текущий момент ученые работают над проектами подразумевающие использование:

•  Биогаза

•  Биодизельного топливо

•  Биоэтанола

•  Ветроэнергетики

•  Водородная энергетики

•  Геотермальная энергии

•  Солнечных элементов

•  Атомной энергетики

•  Термоядерная энергетика (на основе использования Гелия 3)

 

Основная часть

 

Итак, рассмотрим каждую альтернативу в отдельности.

 

2.1.Биогаз

Биометан – газ, полученный при брожении органических отходов (биогаз). Наиболее целесообразной сферой применения биогаза является отопление животноводческих ферм, жилых помещений и технологических участков. Также биогаз можно использовать в качестве моторного топлива. Излишки полученного топлива можно перерабатывать в электроэнергию с помощью дизельных генераторов.

Биометан имеет низкую объемную концентрацию энергии. При нормальных условиях теплота сгорания 1 л . биометана составляет 33 - 36 кДж.

Биометан имеет высокую детонационную стойкость, что позволяет снижать концентрацию вредных веществ в отработанных газах и уменьшать количество отложений в двигателе.

Биометан как моторное топливо должен применяться в транспортных двигателях либо в сжатом, либо в сжиженном состоянии. Однако основным сдерживающим фактором широко применения сжатого биометана в качестве моторного топлива, как и в случае со сжатым природным газом, является транспортировка значительной массы топливных баллонов.

За рубежом проблеме получения и использования биогаза уделяют большое внимание. За короткий срок во многих странах мира возникла целая индустрия по производству биогаза: если в 1980 г . в мире насчитывалось около 8 млн. установок для получения биогаза суммарной мощностью 1,7—2 млрд. куб. м в год, то в настоящее время данные показатели соответствуют производительности по биогазу только одной страны — Китая.

К примуществам биогаза можно отнести:

•  Получение энергии без дополнительной эмиссии CO 2 .

•  Закрытые системы не пропускают или незначительно пропускают запахи.

•  Улучшение торговой ситуации и снижение зависимости от импортёров энергии.

•  Электричество на биогазе можно вырабатывать 24 часа в сутки.

•  Отсутствие зависимости от ветра/воды/электричества.

•  Улучшение удобряемости почвы.

 

Недостатками получения и использования биогаза являются его повышенная взрывоопасность и возможность заражения человека паразитами, обитающими в разлагающейся биомассе. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 кВт/ч.

 

 

2.2 Биодизельное топливо

Биодизель — топливо на основе растительных или животных жиров (масел), а также продуктов их этерификации. Применяется на автотранспорте в виде различных смесей с дизельным топливом.

Экологические аспекты применения:

- Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения рек и озёр.

К преимуществам биодизеля можно отнести:

•  увеличение цетанового числа и смазывающей способности, что продлевает жизнь двигателя;

 

•  значительное снижение вредных выбросов (включая СО, СО2, SO2, мелкие частицы и летучие органические соединения);

 

•  способствование очистке инжекторов, топливных насосов и каналов подачи горючего.

Недостатки

- В холодное время года необходимо подогревать топливо идущее из топливного бака в топливный насос или применять смеси 20% БИОДИЗЕЛЯ 80% солярки.

 

 

2.3.Биоэтанол

Биоэтанол – это жидкое спиртовое топливо, пары которого тяжелее воздуха. Он вырабатывается из сельскохозяйственной продукции, содержащей крахмал или сахар, например, из кукурузы, зерновых или сахарного тростника. В отличие от спирта, из которого производятся алкогольные напитки, топливный этанол не содержит воды и производится укороченной дистилляцией (две ректификационные колонны вместо пяти) поэтому содержит метанол и сивушные масла, а также бензин, что делает его непригодным для питья.

Топливный биоэтанол производится почти так же, как и обычный пищевой спирт для производства алкогольных напитков, но есть несколько существенных отличий.

Этанол можно производить из любого сахаро- и крахмало-содержащего сырья: сахарного тростника и свеклы, картофеля, топинамбура, кукурузы, пшеницы, ячменя, ржи и тд.

К примуществам биоэтанола можно отнести:

• этанол имеет высокое октановое число

• биоэтанол разлагаем и не загрязняет природные

водные системы

• 10% этанола в бензине снижает токсичность выхлопа

на 30%

• содержание этанола в дизельном топливе позволяет

снизить выбросы СО на 26%, выбросы оксидов азота

на 5%, аэрозольных частиц на 40%.

• этанол является единственным возобновляемым

жидким топливом, использование которого в

качестве добавки к бензину не требует изменение

конструкции двигателей

 

Особо ярко выраженных недостатков не имеет.

 

2.4. Ветроэнергетика

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра, фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогененератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т.п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Преимущества:

•  Экологически чисто.

•  Безопасно для человека (нет радиации, отходов).

Основные недостатки:

Низкая плотность энергии, приходящейся на единицy площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц.

 

 

2.5. Водородная энергетика

Водородная энергетика — направление выработки и потребления энергии человечеством, основанное на использования водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в кругооборот водородной энергетики). Существует несколько способов производства водорода:

•  Из природного газа

•  Газификация угля:

•  Электролиз воды (*обратная реакция)

•  Водород из биомассы

Преимущества:

•  экологическая чистота водородного топлива.

•  возобновляемость.

•  чрезвычайно высокий КПД - 75%, что почти в 2,5 раза выше, чем у самых современных установок, работающих на нефти и газе.

Есть у водорода и более серьезные недостатки. Во-первых, в свободном газообразном состоянии он в природе не существует, то есть его нужно добывать. Во-вторых, водород, как газ, довольно опасен. Его смесь с воздухом сначала незримо "горит", то есть выделяет тепло, а потом легко детонирует от малейшей искры. Классический пример водородного взрыва - чернобыльская авария, когда в результате перегрева циркония и попадания на него воды образовался водород, который потом и сдетонировал. В-третьих, водород нужно где-то хранить, причем в больших емкостях, поскольку он имеет низкую плотность. А сжимать его можно только под очень высоким давлением, приблизительно в 300 атмосфер.

 

2.6. Геотермальная энергия

Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Эта температура постепенно снижается от горячего внутреннего ядра, где, как полагают учёные, металлы и породы могут существовать только в расплавленном состоянии, до поверхности Земли. Геотермальная энергия может быть использована двумя основными способами - для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятий. Для какой из этих целей она будет использоваться, зависит от формы, в которой она поступает в наше распоряжение. Иногда вода вырывается из-под земли в виде чистого “сухого пара”, т.е. пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии. Конденсационную воду можно возвращать в землю и при ее достаточно хорошем качестве - сбрасывать в ближний водоем.

Преобразование термальной энергии океана.

Идея использования разности температур океанских вод для производства электроэнергии возникла около 100 лет назад, а именно в 1981 году. Французский физик Жак Д, Арсонваль опубликовал работу о солнечной энергии морей. В то время было уже известно многое о способности океана принимать и аккумулировать тепловую энергию. Был известен и механизм рождения океанских течений и основные закономерности образования температурных перепадов между поверхностными и глубинными слоями воды.

Использование перепада температур возможно по трём основным направлениям: непосредственное преобразование на основе термоэлементов, преобразование теплоты в механическую энергию в тепловых машинах и превращение в механическую энергию в гидромашинах с использованием разности плотностей тёплой и холодной воды.

Преимущества:

•  они практически не нуждаются в техническом обслуживании.

•  Одно из преимуществ геотермальной электростанции состоит в том, что по сравнению с электростанцией, сжигающей органическое топливо, она выделяет примерно в двадцать раз меньше углекислого газа при производстве такого же объёма электричества, что снижает её влияние на глобальную окружающую среду.

•  Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

 

Какие проблемы возникают при использовании подземных термальных вод? Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

 

 

2.7. Солнечные элементы

Принципы работы солнечных элементов:

Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния.

В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные СЭ из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются.

Преимущества:

•  Энергия солнца почти бесконечна

•  Экологически чисто

•  Безопасно для человека и природы

 

Недостатки: Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30—50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.

 

2.8.Атомная энергетика

Ядерная энергия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.К примеру при делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВтч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер используется в ядерных реакторах.

Преимущества:

•  низкие и устойчивые (по отношению к стоимости топлива) цены на электроэнергию;

 

•  среднее воздействие на экологическую среду.

 

Недостатки атомных станций:

•  Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

•  Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

•  При низкой вероятности инцидентов, последствия их крайне тяжелы

•  Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Все выше перечисленные альтернативы нефти имеют один, но очень существенный недостаток, они НЕ способны ПОЛНОСТЬЮ заменить нефть как источник энергии. Лишь применением термоядерной энергии может помочь в данной ситуации.

 

 

 

2.9.Термоядерная энергетика

Термоядерная энергия с участием гелия 3 – это безопасная и качественная энергия.

Термоядерные реакции. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций. Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития.

Если использовать в термоядерном реакторе дейтерия с изотопом гелия-3 вместо применяемых материалов в ядерной энергетике. Интенсивность нейтронного потока падает в 30 раз — соответственно, можно без труда обеспечить срок службы реактора в 30-40 лет (соответственно уменьшается количество выделяемой радиации). После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

Так в чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы — примерно 4000 т. На самой Земле его еще меньше — около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных — практически неисчерпаемых запасах!

Высокое содержание гелия-3 в лунном реголите еще в 1970 году обнаружил физик Пепин, изучая образцы грунта, доставленные американскими космическими кораблями серии «Аполлон». Однако это открытие не привлекало внимания вплоть до 1985 года, когда физики-ядерщики из Висконсинского университета во главе с Дж.Кульчински «переоткрыли» лунные запасы гелия.

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна», показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше — 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

 

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно, для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С — почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, — которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Если учесть, что нефть кончится через 35-40 лет, то у нас достаточно времени, чтобы реализовать подобный проект. И именно та страна, которая сможет его реализовать, в будущем будет лидером, а если объединить усилия можно добиться большего результата и в более быстрые сроки.

И так, почему термоядерная энергия? Потому что это:

- Крупномасштабный источник энергии с избыточным и доступным всюду топливом.

- Очень низкое глобальное воздействие на окружающую среду – Нет эмиссии СО2.

- "Повседневное действие" электростанции не требует транспортировки радиоактивных материалов.

- Электростанция безопасна, без возможности “расплавления” или “неуправляемой реакции”.

- нет радиоактивных отходов, что не создает проблему для будущих поколений.

Это Выгодно: Для производства 1 Гвт энергии требуется приблизительно 100 кг дейтерия и 3 тонны природного лития, чтобы использовать в течение целого года, производя приблизительно 7 миллиардов Квт час

 

 

 

 

3.Заключение

 

И так, энергия – это важный ресурс необходимый для комфортного существования человечества. А добыча энергии – одна из главных проблем человечества. Сейчас активно используется нефть –как источник электрической и топливной энергии .Но она не бесконечна, и запасы ее с каждым годом только уменьшаются. А текущие разработанные альтернативы – не позволяют полностью заменить нефть или же обладают серьезными недостатками.

Единственным на сегодняшний день источником энергии, способным давать необходимое количество энергии для всего человечества и при этом не иметь серьезные недостатков – является термоядерная энергия на основе использования гелия 3. Технология получения энергии из данной реакции трудоемка и требует больших вложений, но получаемая таким образом энергия – экологически чистая и исчисляется в миллиардах киловатт.

Если получать дешевую и экологически чистую энергию, можно максимально заменить нефть, к примеру отказаться от бензиновых двигателей в пользу электрических, производить тепло с использование электричества и пр.Тем самым нефти – как сырьевого ресурса для химического производства, хватит человечеству еще на долгие столетия.

Поэтому на луне (которая является основным источников гелия 3) необходимо создать промышленность. Чтобы создать промышленность, нужно иметь план развития, а это дело нескольких лет и чем раньше начать – тем лучше. Потому что, если придется делать это уже в безвыходной ситуации (во время энергетического криза – к примеру), срочно, это обернется совсем другими расходами.

А та страна, которая быстрее будет развиваться в этом направлении – в будущем станет лидером. Т.к за энергией – будущее.

4.Список использованной литературы

 

1. http://ru.wikipedia.org/ - всемирная энциклопедия

2. http://www.zlev.ru/61_59.htm - Журнал «Золотой Лев» № 61-62 - издание русской консервативной мысли , Когда кончится нефть?

3. http://www.vz.ru/society/2007/11/25/127214.html -ВЗГЛЯД / Когда кончится нефть

4. http://vz.ru/economy/2007/11/1/121681.html - ВЗГЛЯД / В мире кончается нефть

5. http://bio.fizteh.ru/departments/physchemplasm/topl_element.html ->Альтернатива нефти?. Факультет молекулярной и биологической физики МФТИ. "Физтех- Портал", "Физтех-центр"

6. http://encycl.accoona.ru/?id=74848 - ЯДЕРНАЯ ЭНЕРГИЯ - Интернет-энциклопедия, толковый словарь.

7. http://www.vepr.ru/show.html?id=7 -Откуда берется электричество (история возникновения)

8. http://www.bioenergy.by/mejdu_1.htm -Энергия биомассы. Проект ПРООН/ГЭФ BYE/03/G31 в Беларуси

9. http://bibliotekar.ru/alterEnergy/37.htm - Достоинства и недостатки ветроэнергетики. Принципы преобразования ветровой энергии. Ветроэнергетика

10. http://www.smenergo.ru/hydrogen_enegry/ - Водородная энергетика. Энергия и энергетика.

11. http://works.tarefer.ru/89/100323/index.html Первичные источники питания и термоядерная энергия

12. http://tw.org.ua/board/index.php?showtopic=162 -Термоядерная энергия

13. http://www.helium3.ru/main.php?video=yes - Гелий -3, Helium-3

14. http://razrabotka.ucoz.ru/publ/4-1-0-16 - ГЕЛИЙ-ТРИ — ЭНЕРГИЯ БУДУЩЕГО - лунная программа - Каталог статей - Разработка

15. http://www.fp7-bio.ru/presentations/fisheries/bioetanol.pdf/at_download/file - энергия будущего

16. http://www.scienmet.net/ - Ветрогенератор, ветроэнергетика

17. http://oil-resources.info - топливные ресурсы

18.http://ru.wikipedia.org/wiki/Водородная_энергетика.

19.http://www.ruscourier.ru/archive/2593 -недостатки водорода

20. http://www.intersolar.ru/geothermal/pressa/rbsgeo.html - Энергия из глубин - www.intersolar.ru

21.http://web-japan.org/nipponia/nipponia28/ru/feature/feature09.html - НИППОНИЯ No.28 15 марта 2004г.

22. http://www.kti.ru/forum/img/usersf/pic_41.doc - альтернативные источники энергии

23. http://www.rosnpp.org.ru/aes_preimush.shtml - атомные электростанции

24. http://www.atomstroyexport.ru/nuclear_market/advantage/ - атомная энергия

25. http://solar-battery.narod.ru/termoyad.htm - термоядерная энергия в действии

26.http://business.km.ru/magazin/view.asp?id=7B07CB0288D54DC0AC68C60AF246D693 - Бизнес KM.RU. Будущее российской энергетики - за биотопливом и термоядерной энергией

27.Журнал «Эксперт» от 19 ноября 2007 года -> Будущее за термоядом на основе гелия 3.